
II. Analytic methods in complex algebraic geometry

To continue discussing the question “what is complex
algebraic geometry?” we will illustrate how analytic methods
(PDEs and differential geometry) lead to what remain as some
of the deepest results in the subject. Our emphasis will be on
existence and uniqueness theorems, and the techniques
illustrated will be restricted to complex dimension 1 but they
will extend to the general case. At the end we will return to
the integrals of algebraic functions and add a new ingredient.
The types of questions to be considered are

I Given a compact Riemann surface (to be defined) and
points p1, . . . , pd on C , does there exist a meromorphic
function w on C having poles on the pi? How many such
functions are there?
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Remark that a meromorphic function will be the same as a
holomorphic mapping

w : C → P1

from the Riemann surface C to the Riemann surface P1 (=
Riemann sphere).

I Can we construct meromorphic differentials ϕ on C with
poles on the pi and given residues, subject only to the
constraint imposed by the residue theorem∑

pi
Resϕ = 0?

These are existence results that require analysis to address.
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Riemann sphere C ∪ {∞}

z
0

∞ 
U0 = P1\{∞} ∼= C, z

U∞ = P1\{0} ∼= C, z ′

U0 ∩ U∞ ∼= C∗, z = 1
z ′
.

Linear fractional transformations

z → (az + b)/(cz + d)

where det ( a b
c d ) 6= 0 act transitively on P1. Then ( 0 1

1 0 ) sends
0→∞.
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(i) function w on open set is holomorphic or meromorphic if
w(z) is holomorphic/meromorphic in the usual sense

(ii) any global holomorphic function is constant (maximum
principle — will give another proof below)

(iii) if w(z) is meromorphic on P1 then

# zeroes = # poles

Will also recall the proof later.

(iv) there exists w(z) with given zeroes and poles if # zeroes
= # poles

Proof of (iv): w(z) =

∏
(z − ai)

mi∏
(z − bj)nj

and
∑
i

mi =
∑
j

nj .
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(v) w meromorphic on P1w�
w is rational function

(can work analytically and results will have
algebro-geometric meaning)

(vi) ϕ = w(z) dz is holomorphic or meromorphic if w(z) is.

The integral
´
γ
ϕ is well defined for γ = path in P1 not

containing any pole of ϕ.

This may be refined to γ not containing any point p with
Resp ϕ 6= 0. Moreover, The integral above will be invariant
under continuous deformation of the contour γ provided the
deformation does not cross a point p with Resp ϕ 6= 0.
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Example
For z = 1

z ′
, dz = − dz ′

(z ′)2 . For w(z) =
∑n

i=0 aiz
i polynomial

I w(z) has pole of order n at ∞
I w(z) dz has pole of order n + 2 at ∞.

(vii) Resp ϕ = 1
2πi

¸
ϕ,

∑
Resp ϕ = 0

This implies (iii) where ϕ = dw(z)
w(z)

.

Example
ϕ = dz

z
= −dz ′

z ′
=⇒ Res0 ϕ + Res∞ ϕ = 0
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Proof of (vii):

*

* *

*
*

γ

��)
U=P1\ l|||

|||l
ˆ
γ

ϕ =
∑
p∈U

Resp ϕ

= −
∑
p ∈ iResp ϕ = 0

(ix) there exist a (unique) ϕ with given poles and residues
⇐⇒

∑
p Resp ϕ = 0
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Proof: May assume all zi ∈ C ⊂ P1. Then∑ ai dz

z − zi
= −

∑(
ai

z ′(1− z ′zi)

)
dz ′

= −
(∑

ai
) dz ′

z ′
+ holomorphic differential near z ′ = 0

(x) any meromorphic differential ϕ is

ϕ = ϕ′ + ϕ′′



� JJ]
1st order
poles

no
residues

=⇒
ˆ z

z0

ϕ =
∑

ai log(z − zi) + w(z)

= elementary function
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Variant:1 Relative algebraic curve (P1; {0,∞})

Picture = , require w(0) = w(∞)

There exists w(z) with given zeroes and poles in P1\{0,∞}
and w(0) = w(∞) ⇐⇒ # zeroes = # poles and∏

ami
i =

∏
b
nj
j

<◦>

1In preparation for lecture # 4
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General algebraic curves

For P1 we can do everything “by hand” using elementary
complex analysis. Don’t need PDEs, differential geometry,
Hodge theory, . . . . To understand C corresponding to

w 2 = p(z), w =
√

p(x)

xy
δ γ

+ _

the issue is much more subtle and interesting. For example,
(v), (ix) become
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(vC ) there exist a non-constant meromorphic function w on C
with poles at any distinct points p1, . . . , pd if d = g + 1 .
For general pi this is the best possible and if d = g + 1
the function is unique up to scaling.

(ixC ) there exists ϕ with given residues ⇐⇒
∑

Resϕ = 0.
This ϕ is unique up to ϕ + ω where ω ∈ H1,0(C ) has´
ω <∞ (recall that h1,0(C ) = dimH1,0(C ) = g)

Results such as these provide the beginnings of

I the Riemann-Roch theorem (dimensions of space of
functions in (vc))

I classification of algebraic curves (moduli; # parameters of
C is equal to 1 for g = 1 and to 3g − 3 for g = 2)

I Hodge structures and mixed Hodge structures
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To prove them requires analysis in the PDE sense, specifically
the study on C of the inhomogeneous Cauchy-Riemann
equations

∂w = ϕ

where w = w(z , z̄) and ϕ = v(z , z̄) dz̄ are C∞ in the
variables x = 1

2
(z + z̄) and y = 1

2i
(z − z̄) and{

∂w = (∂z̄w) dz̄

∂z̄ = 1
2
(∂x − i∂y ).

Then for w = u + iv

∂z̄w = 0 ⇐⇒

{
∂xu = −∂yv
∂yu = ∂xv

are usual Cauchy-Riemann equations.
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We note that for
z ′ = f (z)

holomorphic we have the chain rule which we write as

f ∗∂ = ∂
′

(The notations we will use for complex analysis are collected in
the appendix to these notes.) Thus to do analysis on an
algebraic curve C we need that

(i) C locally looks like an open set in C
(ii) any two such local representations are related by a

holomorphic change of variables.
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Think of P1 and U0,U∞. For our C given by w 2 = p(z)

+ _

any open set not containing a branch point looks like an open
set in C; all we have done is locally choose one branch of√

p(z).
At a branch point, say z = 0

w 2 = zq(z), q(0) 6= 0.

We can take
√

q(z) and for

w ′ =
w√
q(z)

write the equation as
w
′2 = z .
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The mapping

t → (t2, t)

↑ ↑
z w ′

gives an isomorphism between an open set in C and an open
set in C. The real picture is

y = x2 + · · ·
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Construction of global meromorphic functions

Given p1, . . . , pd ∈ C we want to construct w : C → P1 with
w−1(∞) = p1 + · · ·+ pd

* *

U1 U2
PP

Pi
��

�1

I ρi = C∞f n in Ui
�

= 1 near pi

H = 0 on ∂Ui
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ϕ =
∑
i

∂

(
ρi

z − zi

)
defn
=
∑ ∂ρi

z − zi

= C∞ (0, 1) form on C .

If we can solve

(∗) ∂g = ϕ, g = C∞f n on C

then

∂

(
g −

∑ ρi
z − zi

)
︸ ︷︷ ︸

w

= 0.

Theorem
If d = g + 1 we can solve (∗).

Curvature enters in the proof, which will be given later. We
begin with some illustrations of different types of analytic
arguments.

17 / 40



A global holomorphic function on C is constant:

I 1-form ϕ = u dx +v dy

= U dz +V dz̄

I differential of a function dw = wx dx +wy dy

= wz dz +wz̄ dz̄

I exterior derivative of 1-form2

dϕ = (∂yv − ∂xu) dx ∧ dy
= (Vz − Uz̄) dz ∧ dz̄

I Stokes’ theorem
´
∂U
ϕ =
˜

U
dϕ, if ϕ is C∞ in U.

Proof that a global holomorphic function is
constant: dw = dw and w holomorphic =⇒

(i/2)

¨
dw ∧ dw̄ = (i/2)

¨
|wz |2 dz ∧ dz̄

where we are using U = C in the integral.
2Use Liebuitz plus α ∧ β = −β ∧ α for 1-forms α, β.
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Note (i/2) dz ∧ dz̄ = dx ∧ dy > 0. But by Stokes’ theorem
and ∂C = 0 ¨

dw ∧ dw̄ =

¨
d(w dw̄) = 0

=⇒ |wz |2 = 0.

Residue Theorem∑
Resp ϕ = 0

Proof: Same as for P1 using the picture

*

* *

holomorphic 
here

�
���

ϕ
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Where does the “g” come from in d = g + 1?

Suppose we want w such that

w =
ai

z − zi
+ · · ·

near pi . For ϕ ∈ H1,0(C ) ∼= Cg

(∗∗)
∑
i

Respi (wϕ) = 0

gives g equations on a1, . . . , ad . Suggests we need d = g + 1
to have a non-zero solution.

Theorem
(∗∗) gives necessary and sufficient conditions to have a
w : C → P1 as above.
We will prove this below.

<◦>
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Construction of meromorphic differentials
Want ϕ so that near pi

ϕ =
ai dz

z − zi
+ · · ·

Consider as before

ϕ′ =
∑
i

ρi
ai dz

z − zi

Φ = ∂ϕ′ =
∑

∂ρi ∧
ai dz

z − zi
.

If
Φ = ∂η

where η is C∞(1, 0) form locally looking like

u(z , z̄) dz

for u(z , z̄) a C∞ function,
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then
ϕ = ϕ′ − η

solves the problem.

Now Φ is a global C∞ 2-form

Φ = H(z , z̄)(i/2) dz ∧ dz̄
= H(x , y) dx ∧ dy .

By Stokes’ theorem

¨
C

Φ = lim
ε→0

¨
C−∪∆i (ε)

dη =
∑
i

ai .

So we need

If Φ = global C∞ 2-form on C with
˜

Φ = 0, then
Φ = ∂η.
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Here is the argument:

I Ap,q = global C∞(p, q) forms

I A0,0 = A0 = global C∞ functions

I A0 ⊗ A1,1 // C

∈ ∈
u ⊗ Φ //

˜
C
uΦ

I A0,1 ⊗ A1,0 // C

∈ ∈

α⊗ β //
˜
α ∧ β

are non-degenerate pairings and
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I A0 ∂0 // A0,1

I

{ A1,0 ∂1 // A1,1

∼ = ∼ =

A0,1∗ ∂
∗
0 // A0∗

are dual. This gives3

coker ∂1
∼= coker ∂

∗
0
∼= (ker ∂0)∗.

We need to make the Ap,q into topological vector spaces such
that ∂0 and ∂1 are continuous with closed range; this is the
analysis step. Then

ker ∂0
∼= C =⇒

¨
A1,1

∂1A1,0

∼−→ C.

3Dual of a subspace S of a vector space V is isomorphic to the
quotient V ∗/S⊥ of the dual of V .
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I D = p1 + · · ·+ pd , d = 1

I H1,0(C ,D)
defn
=

{
meromorphic differentials

with poles at the pi

}
A similar argument using ker{∂0 : A0(−D)→ A0,1(−D)} = 0
gives

dimH1,0(C ,D) = d + g − 1

which is the result about meromorphic differentials with given
residues.
This result is a special case of the Riemann-Roch theorem.
The argument contains a special case of the Kodaira vanishing
theorem: Given

Ψ = A1,1(D)

where locally Ψ = w(z , z̄) dz ∧ dz̄ /z − zi

=⇒ Ψ = ∂η

where locally η = v(z , z̄) dz /z − zi .
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Back to the proof that for d = g + 1 there exists

w : C → P1

with w−1(∞) = p1 + · · ·+ pd . The above argument for

A1,0 ∂1 // A1,1

∼ = ∼ =

(A0,1)∗
∂
∗
0 // (A0)∗

and
ker ∂1 = H1,0(C ) has dimension g

gives

(∗) dim(A0,1/∂0A
0) = g .
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As before consider

η = ∂

(∑
ρi

ai
z − zi

)
∈ A0,1.

By (∗) there are g conditions on the ai that there exist u ∈ A0

η = ∂u.

For d = g + 1 we have such a u, and then

∂

(∑
ρi

ai
z − zi

− u

)
︸ ︷︷ ︸

w

= 0

=⇒ w gives our desired function.
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Moral
Global existence comes by solving ∂-equations.

<◦>
How does curvature enter?

Will not get in formalism of vector bundles, metrics,
connection and curvature matrices. Will use singular metrics
and their curvatures in an intuitive way considered as
distributions.
I Metric on a Riemann surface is locally

ds2 = h dz ⊗ dz̄ , h > 0.

Area form is
Φ = h(i/2) dz ∧ dz̄ .

Gauss curvature is

(i/2)∂∂ log h = KΦ.
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Gauss-Bonnet is

1

2π

¨
C

KΦ = χ(C ) = 2− 2g .

Example
On P1

ds2 =
dz ⊗ dz̄

(1 + |z |2)2
.

Then K = 1 and area = 4π.
<◦>

In general curvatures are computed as the (1,1) form

∂∂ log h(z , z̄)

where h > 0 is C∞. Very useful also is the use of singular
metrics, where h = 0 and log h is in L1 but may have the value
−∞.
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Here the basic formula is (leaving out some constants)

∂∂ log |z − z0| = δ0 dz ∧ dz̄ .

This means that for any w ∈ C∞c (C)

(])

¨
C

log |z − z0|∂∂w(z , z̄) = w(z0)

Idea:

&%
'$s
z0

∆ε(z0)

On C\∆ε(z0),

∂∂ log |z − z0|2 = ∂

(
dz̄

z̄ − z̄0

)
= d

(
dz̄

z̄ − z̄0

)
= 0.
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Then LHS of (]) = limε→0

˜
C\∆ε(z0)

(· · · ) which using Stokes’

theorem and polar coordinates leads to

(]) = lim
ε→0

ˆ
∂∆ε(z0

w(z , z)

(
dz̄

z̄ − z̄0

)
= lim

ε→0

˛
w
(
z0 + εe iθ

)
dθ = w(z0).

<◦>

For D = pq + · · ·+ pd
* *

* there is a line bundle
O(D) whose sections over an open set U are the meromorphic
functions with poles at the pi ∈ U.4 We define a singular
metric by

‖w‖2 = |w(z)|2.

4We will not define line bundles, but will only say what their sections
over open sets are.
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If we change w(z)→ w(z)u(z) where u(z) 6= 0 then

‖wu‖2 = |w(z)|2|u(z)|2.
Using ∂∂ log |u(z)|2 = 0 the curvature is well defined and is
equal to

(i/2)∂∂ log ‖w‖2 =
∑
pi∈U

δpi
(
(i/2)dz ∧ dz̄

)
Conclusion: As d increases the curvature in O(D) becomes
more positive and O(D) has more global sections, these being
global meromorphic functions on C with poles on D. A central
theme in complex algebraic geometry is

positivity of curvature =⇒ existence of global
holomorphic objects.

Note: The Gauss-Bonnet for O(D) is (up to constants)¨
C

(curvature of O(D)) = degD = d .
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The Abel-Jacobi map revisited
I Recall the Abel-Jacobi map

AJ : C → J(C )

defined by

AJ(p) =


´ p
p0
ω1

...´ p
p0
ωg

 ∈ Cg/Λ

where ω1, . . . , ωg are a basis for H1,0(C ). This is
extended to

AJ : C (d) → J(C )

by setting for D = p1 + · · ·+ pd

AJ(D) =
∑
i

AJ(pi) (Abelian sum)
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Claim

H1(C ,C) ∼= H1,0(C ) ⊕ H1,0(C )

= =

Hom(H1(C ,Z),C) H0,1(C )

Sketch of proof:
I from topology we know cup-product in cohomology is

dual to intersection product in homology
I intersection matrix of standard basis {δi , γj} of H1(C ,Z)

is (
0 I

−I 0

)
= Q

I cup product in cohomology is

α ∪ β =

ˆ
C

α ∧ β
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I using ωi ∧ ωj = 0 = ω̄i ∧ ω̄j the cup product matrix for
ωi is(

0 H

−tH 0

)
, Hi ,j̄ =

ˆ
C

ωi ∧ ωj = −
ˆ
C

ωj ∧ ωi

I (i/2)H is a positive definite Hermitian matrix: For
ω = h(z) dz

(i/2)

ˆ
C

ω ∧ ω =

ˆ
C

|h(z)|2(i/2) dz ∧ dz̄

I recall

Ω =
∥∥∥ˆ

δi

ωk ,

ˆ
γj

ωk

∥∥∥ = (A,B)

then duality between cup product and intersection pairing
gives
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i tΩQΩ =

(
0 H

−tH 0

)

=

−tBA + tAB

=⇒ A non-singular
I then may choose basis ωi to have A = I which gives

normalized period matrix for H1,0(C ){
Ω = (I ,Z )

Z = tZ , ImZ > 0

I period matrix for H1,0(C )⊕ H1,0(C ) is(
I Z

I Z

)
= non-singular matrix

<◦>
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I Riemann theta function: For w ∈ Cg

θ(w ,Z ) =
∑
m∈Zg

exp

(
2πi

(
1

2
tmZm + tmw

))
I entire analytic function on Cg 5

I θ(w + a + Zb︸ ︷︷ ︸
general vector in Λ

where a,b∈Zg

) = e2πi(−tbZ)θ(w ,Z )

I θ(w ,Z ) = 0 defines a hypersurface Θ ⊂ J(C )
I Riemann theorem: Θ = AJ(C (g−1)).

 I Torelli theorem: Can reconstruct C from its period
matrix.

For g = 2, AJ(C ) = Θ.
This is the beginning of how Hodge theory may be used to
study the geometry of algebraic curves

<◦>
5Sum is like

∑
m∈Zg e−‖m‖

2

.
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Appendix: Notations from complex function theory
I z = x + iy will denote points in open sets in C
I differentials (things you integrate){

dz = dx +i dy

dz̄ = dx −i dy
then {

dx = 1
2
(dz + dz̄)

dy = i
2
(dz̄ − dz)

I multiplication rule is α ∧ β = −β ∧ α for 1-forms α, β
I area form is

dx ∧ dy = (i/2) dz ∧ dz̄
I complex plane is oriented

x , (i/2) dz ∧ dz̄ > 0

iy
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I

{
∂z = 1

2
(∂x − i∂y )

∂z̄ = 1
2
(∂x + i∂y )

=⇒ ∂z∂z̄ = 1
4
(∂2

x + ∂2
y ) = −∆ where ∆ = Laplacian

I dw(x , y)=(∂xw) dx +(∂yw) dy
=

dw(z , z̄)=(∂zw) dz︸ ︷︷ ︸+ (∂z̄w) dz̄︸ ︷︷ ︸
= ∂w + ∂w

=⇒ w holomorphic ⇐⇒ ∂z̄w = 0

⇐⇒ ∂ w = 0

Cauchy-Riemann

      equations

I meromorphic w(z) has Laurent series around z = 0

w(z) =
∞∑

i=−n

aiz
i
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I meromorphic differential

ϕ = w(z) dz

has residue

Resϕ = a−1 =
1

2πi

˛
ϕ

I residue theorem

*

*

*

1

2πi

ˆ
∂U

ϕ =
∑
p∈U

Resp ϕU→

<◦>
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